
Aspect-Oriented

Design Patterns
And Their Use for Advanced Modularization

Autochthonous – Intrinsic

Aspect-Oriented Patterns
 Cannot be used without aspect-oriented technology

(aspect oriented world)

 usually require to employ some of various kinds of weaving

Examples:

- Wormhole
- Worker Object Creation
- Cuckoo’s Egg

- Delegate such work on worker objects

- Do not modify already provided code

Task: Run methods in different

order according to their first

argument after/before certain

method is executed

Code that has to

be left intact

Source: http://www2.fiit.stuba.sk/~vranic/aosd/poznamky/aspekty-aj.pdf

Worker Creation and

Its Application
CREATING WORKER

MAKING WORKER WORK

Source: http://www2.fiit.stuba.sk/~vranic/aosd/poznamky/aspekty-aj.pdf

Worker Object Creation

A joint point has to be transferred to

another context for execution,

but without transforming corresponding code.

CONTRADICTING FORCES:

1.

2.

THEIR RESOLUTION:

Using threads with ability to execute particular

method/functionality (proceed() call) after

particular joint point is reached/executed.

Worker Object Creation
void around(): <pointcut> {

 Runnable worker = new Runnable() {

 public void run() {

 // calling inner function body

 proceed();

 }

 };

 invoke.Queue.add(worker);

}

Why autochthonous?
void around(): <pointcut> {

 Runnable worker = new Runnable() {

 public void run() {

 // calling inner function body

 proceed();

 }

 };

 invoke.Queue.add(worker);

}

Original method is called inside worker

after/before specific joint point

is reached – NO TANGLED CODE!!!

Worker Object Creation

Source: http://www2.fiit.stuba.sk/~vranic/aosd/poznamky/aspekty-aj.pdf

Worker

Object

Creation

Source: http://www2.fiit.stuba.sk/~vranic/aosd/poznamky/aspekty-aj.pdf

Wormhole

Source: https://images.theconversation.com/files/476946/original/file-20220801-62374-uyna4z.jpg?ixlib=

rb-4.1.0&q=45&auto=format&w=1000&fit=clip

 As Wormhole to connect two distinct spaces:

 Caller space/concern: <caller context>

 Callee space/concern: <callee context>

BENEFIT: without need to extend

arguments in place of these spaces – in place of

their original methods (implementation of these

crosscutting concerns)

https://images.theconversation.com/files/476946/original/file-20220801-62374-uyna4z.jpg?ixlib=

Task: Solve or Propagate Tasks

To Other Employees But Not

Propagate Tasks From Authority

With ID = 13

Source: http://www2.fiit.stuba.sk/~vranic/aosd/poznamky/aspekty-aj.pdf

Source: http://www2.fiit.stuba.sk/

~vranic/aosd/poznamky/aspekty-aj.pdf

http://www2.fiit.stuba.sk/

Source: http://www2.fiit.stuba.sk/~vranic/aosd/poznamky/aspekty-aj.pdf

Source: http://www2.fiit.stuba.sk/~vranic/aosd/poznamky/aspekty-aj.pdf

public aspect WormHoleAspect() {

 pointcut callerSpace(<caller context>):

 <caller pointcut>;

 pointcut calleeSpace(<callee context>):

 <callee pointcut>;

 pointcut wormhole(

 <caller context>, <callee context>):
 cflow(callerSpace(<caller context>))

 && calleeSpace(<callee context>);

Callee space pointcut to capture

particular callee join points

Caller space pointcut to capture

particular caller join points

Specifying situation where new

Concern based on both

concerns should be applied

void around(

 <caller context>, <callee context>): c

 wormhole(

 <caller context>, <callee context>) {

 // implementation

 // of crosscutting concern

 }

}

Here the concern demanding the connection

of two distinct spaces is implemented in

 separated aspect – modularized

Wormhole

The calling object should be known within

the context of the method being called,

but without transferring it as a parameter.

CONTRADICTING FORCES:

1.

2.

THEIR RESOLUTION:

Connecting two distinct spaces and resolving

crosscutting concern that requires both of them

in sparated aspect (original code remains unaffected)

Why autochthonous?
public aspect WormHoleAspect() {

 pointcut callerSpace(<caller context>):

 <caller pointcut>;

 pointcut calleeSpace(<callee context>):

 <callee pointcut>;

 pointcut wormhole(

 <caller context>, <callee context>):
 cflow(callerSpace(<caller context>))

 && calleeSpace(<callee context>);

In object oriented word this

can be treated only using

function arguments and

Possibly tangling concerns

Selects callee and caller join

points followed by their

connection to solve

crosscutting concern

using custom advice

Cuckoo’s Egg

Source: https://www.google.com/url?sa=i&url=https%3A%2F%2Ftheconversation.com%2Fegg-colours-

make-cuckoos-masters-of-disguise-34217&psig=AOvVaw3NA4ZXURt2uxocGpdamS0T&ust=

1724701901436000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCLCqrrT1kIgDFQAAAAA

dAAAAABAE

 As Egg similar to other eggs in

analogy while substituting

existing functionality under

similar/known type in

program:

BENEFIT: existing

functionality remained

unchanged only new concern is

employed as the substitution

while instantiating of the

https://www.google.com/url?sa=i&url=https%3A%2F%2Ftheconversation.com%2Fegg-colours-

public aspect CuckoosEggAspect() {

 pointcut cuckoosConstructors():

 call(EggClass.new()):

 <callee pointcut>;

 AbstractEgg around() :
 cuckoosConstructors() {

 return new CuckoosEgg();

 }

}

Getting call of

constructor join point

of EggClass (should be

 replaced with

 CuckoosEgg instance)

Place where replacement with CuckoosEgg

 instance will happen

Original type

 that must hold

Instead of an object of one type, an object of

another type is needed,

but the original type must not be changed.

CONTRADICTING FORCES:

1.

2.

THEIR RESOLUTION:

Instantianting class of another type inherited from original

type and returning this instance instead of original

created object instance (during its constructor call)

Cuckoo’s Egg

Why autochthonous?

public aspect CuckoosEggAspect() {

 pointcut cuckoosConstructors():

 call(EggClass.new()):

 <callee pointcut>;

 AbstractEgg around() :
 cuckoosConstructors() {

 return new CuckoosEgg();

 }

}

Constructor

has to be captured

in some way – which is in object

oriented world solved

by changes to original code

Coplien’s form of Cuckoo’s Egg

Problem:

Context:

Forces:

Solution:

Resulting Context:

Rationale:

Instead of an object of the original type, under certain conditions,

 an object of some other type is needed.

Source: http://www2.fiit.stuba.sk/~vranic/aosd/poznamky/aspekty-aj.pdf

The original type may be used in various contexts. The need for the object

of another type can be determined before the instantiation takes place.

An object of some other type is needed, but the type that is going to be

instantiated may not be altered.

Put the other type instead of the original type before instantiation and provide its

instance instead of the original type instance if the conditions for this are fulfilled.

No need to adapt the original type

The original type remains unchanged, while it appears to give

instances of the other type under certain conditions. There may

be several such types chosen for instantiation according to the

conditions

Aspect-oriented

recreation of object-

oriented design

patterns

Gang of Four (GoF)

design patterns

Aspect-oriented recreation of

Gang of Four (GoF)

design patterns

Are there any benefits?

Aspect-oriented

recreation

of observer

design

pattern

Observer design pattern

– from GoF

Taken from: https://www.linkedin.com/pulse/observer-pattern-usage-samson-baraka-ipdif

Implementation using pure Java

According to: E. Piveta and L. Zancanella,
“Observer pattern using aspect-oriented programming,
” Proceedings of the Third Latin American Conference
on Pattern Languages of Programming, p. 12, 12 2003

According to: http://www2.fiit.stuba.sk/~vranic/aosd/index.html

Celsius class – the subject
Thermometer class – the observers superclass

Implementation using AspectJ

Specialized observers

Separating concerns with

intertype declaration in AspectJ

Adds add(Observer obs) method into

Subject class

Adds remove(Observer obs) method into

Subject class

Updates observers when

there has been detected

a change

…

[INTERTYPE DECLARATION]

[INTERTYPE DECLARATION]

[INTERTYPE DECLARATION]

Implementation functionality of observer separated from

business logic (measuring temperature)

According to: E. Piveta and L. Zancanella,
“Observer pattern using aspect-oriented programming,
” Proceedings of the Third Latin American Conference
on Pattern Languages of Programming, p. 12, 12 2003

Another Observer Implementation

 Using Abstract

 Aspect

Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java and

AspectJ,” in Proc. of 17th ACM SIGPLAN

Conference on Object-Oriented Programming,

Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM,

2002, pp. 161–173.

Another Observer Implementation

 Using Abstract

 Aspect

Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java and

AspectJ,” in Proc.

of 17th ACM SIGPLAN Conference on Object-

Oriented

Programming, Systems, Languages, and

Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM,

2002, pp. 161–173.

Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java and AspectJ,” in Proc. of 17th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161–173.

Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java and AspectJ,” in Proc. of 17th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161–173.

Intertype declaration
 Aspects can declare members (fields, methods, and constructors) that are

owned by other types. These are called inter-type members. Aspects can also

declare that other types implement new interfaces or extend a new class. Here

are examples of some such inter-type declarations:

Source: https://eclipse.dev/aspectj/doc/released/progguide/language-interType.html

Aspect-Oriented Refactoring of

 Singleton Design Pattern

Catching constructor

call (for Singleton

classes)

Trying to

find instance

in HashMap

Creating new and storing

It in HashMap

A Singleton

instance is returned

Cuckoo´s egg

pattern Adapted from: P. Baca and V. Vranic, "Replacing Object-Oriented Design Patterns

with Intrinsic Aspect-Oriented Design Patterns," 2011 Second Eastern European

Regional Conference on the Engineering of Computer Based Systems, Bratislava,

Slovakia, 2011, pp. 19-26, doi: 10.1109/ECBS-EERC.2011.13.

Aspect-Oriented Refactoring of
 Abstract Factory Design Pattern

Circle2D and Circle3D families of shape classes

Abstract Factory

-providing interface for creating families

of objects without the specifying the classes

Aspect-Oriented Recreation of Abstract Factory
-adding inter-type declarations

to interface to an interface implemented by a factory class

Cuckoo´s egg pattern

Use of and capturing a call to static

factory method

- inserted to abstract Circle class

using inter-type declarations

FACTORY METHOD to create circle

NO CONCRETE FACTORY ASPECT

- throwing an exception in this case

Aspect-Oriented Refactoring of

 State Design Pattern
public aspect StatePattern {

 protected MachineState stopped = new StoppedMachineState();

 protected MachineState cleaning = new CleaningMachineState();

 protected MachineState program1 = new Program1MachineState();

 // ALL POSSIBLE STATES OF Machine ENTITY AS PART OF MachineState CLASS

 // …………….

 after(Machine machine, MachineState machineState):
 call(void MachineState.stop()) && target(machineState) && this(machine) {

 if (machineState.getState() != stopped) {

 machineState.setState(stopped);

 }

 // if machine cannot be stopped from some state then exception should be thrown!

 }

Adapted from: R. Miles,
AspectJ cookbook, 1st ed. Sebastopol,
CA; Farnham: O’Reilly Media, 2004.

before(Machine machine, MachineState machineState):
 call(void MachineState.clean()) && target(machineState) && this(machine) {

 if (machineState.getState() == stopped) {

 raise new Exception(“Stopped machine cannot clean!”);

 } else {

 System.out.println(“Cleaning has started!”);

 machineState.setState(cleaning);

 }

 }

 // OTHER MANAGED STATES WITHIN STATES

 // FOR Machine ENTITY/CLASS

 // ………….

}

Aspect-Oriented Refactoring of

 State Design Pattern

Modularization of rules used in state transition – in one aspect

-easier analysis of state transition – easy to add, modify, and remove the state

THE STATE AS SEPARATE CONCERN
-not embedded in methods as in OOP

public abstract aspect FlyweightPattern {

 private Set<Object> flyweightResources = new HashSet<Object>();

 public interface Flyweight {}

 protected abstract Flyweight createNewFlyweight(Object object);

 protected abstract pointcut flyweightPointcut(Object object);

 Object around(Object key): flyweightPointcut(key) &&

 !within(path.this.aspect.FlyweightPattern) {

 return this.manageFlyweight(key);

 }

Aspect-Oriented Refactoring of

 Flyweight Design Pattern

Adapted from: R. Miles,
AspectJ cookbook, 1st ed. Sebastopol,
CA; Farnham: O’Reilly Media, 2004.

ABSTRACTION OF

 THE PATTERN

Aspect-Oriented Refactoring of

 Flyweight Design Pattern
public synchronized Flyweight manageFlyweight(Object key) {

 if (flyweightResources.containsKey(key)) {

 return (Flyweight) flyweightResources.get(key);

 } else {

 Flyweight flyweigthHeavyWeight = createNewFlyweight(key);

 flyweightResources.put(key, flyweigthHeavyWeight);

 return flyweigthHeavyWeight;

 }

 }

}

Adapted from: R. Miles,
AspectJ cookbook, 1st ed. Sebastopol,
CA; Farnham: O’Reilly Media, 2004.

ABSTRACTION OF

 THE PATTERN

public aspect HeavyWeightObjectLifting extends Flyweight {

 declare parents: HeavyWeightObjectLifting implements Flyweight;

 protected pointcut flyweightApplication(Integer weight):

 call(path.heavy.weight.instance.HeavyWeight.new(Integer)) && args(weight);

 protected Flyweight applyNewFlyweight(Integer weight) {

 return new HeavyWeight(weight);

 }

}

Aspect-Oriented Refactoring of

 Flyweight Design Pattern

Adapted from: R. Miles,
AspectJ cookbook, 1st ed. Sebastopol,
CA; Farnham: O’Reilly Media, 2004.

Aspect-Oriented Refactoring of
 Flyweight Design Pattern

Using Cuckoo´s egg pattern instead
1. Creating the new instance on every request when such instance is needed

2. Searching and optionally getting instance from the hash-table if available

3. Otherwise creating new (heavy weight) instance calling proceed() in aspect method

4. Storing instance in hash map

5. Returning instance

Adapted from: P. Baca and V. Vranic, "Replacing Object-Oriented Design Patterns

with Intrinsic Aspect-Oriented Design Patterns," 2011 Second Eastern European

Regional Conference on the Engineering of Computer Based Systems, Bratislava,

Slovakia, 2011, pp. 19-26, doi: 10.1109/ECBS-EERC.2011.13.

Replacing OOP Patterns

With AOP Intrinsic Ones

Adapted from: P. Baca and V. Vranic, "Replacing Object-Oriented Design Patterns

with Intrinsic Aspect-Oriented Design Patterns," 2011 Second Eastern European

Regional Conference on the Engineering of Computer Based Systems, Bratislava,

Slovakia, 2011, pp. 19-26, doi: 10.1109/ECBS-EERC.2011.13.

Each is Replaced

 WithSingleton

Abstract Factory

Flyweight

Cuckoo’s

Egg

Source: J. Hannemann and G. Kiczales, “Design pattern implementation in Java and AspectJ,” in Proc.

of 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161–173.

Source: J. Hannemann and G. Kiczales, “Design pattern implementation in Java and AspectJ,” in Proc.

of 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161–173.

Aspect-Oriented Recreation of

Design Patterns - Benefits

– the implementation in AspectJ is the same

FACADE

-good namespace management required

-pattern is providing unified interface

 -to a set of interfaces of subsystem

STATE, INTERPRETER

STRUCTURALLY THE SAME

MODULARIZATION OF

SCATTERED CODE

USING ROLES ONLY WITHIN

PATTERN ASPECTS

COMPOSITE, COMMAND, MEDIATOR,

CHAIN OF RESPONSIBILITY

-separation of state management

in State pattern

-introduced roles as part of only aspect patterns

 – not need to expose them to outside world

 (such as in OBSERVER pattern)

EMPTY (PROTECTED) INTERFACES

-used within pattern

INTRODUCTION OF TYPES

-defined in abstract aspect
-roles

-implementation where possible

Roles and Their Crosscutting in

Patterns

Source: J. Hannemann and G. Kiczales, “Design pattern

implementation in Java and AspectJ,” in Proc.

of 17th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp. 161–

173.

1 role can be represented by many classes and vice-versa

Many roles in one class

Conceptual methods where 1 method

 crosscuts many classes

In pattern language/composition the class from one role

can take other role from different pattern

1 conceptual operation can crosscut more methods and vice-versa

Source: J. Hannemann and G. Kiczales,

“Design pattern implementation in Java

and AspectJ,” in Proc.

of 17th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems,

Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA:

ACM, 2002, pp. 161–173.

EMPTY INTERFACES
-->Defining roles in patterns
 -introducing types

-[key, value] =

 [Composite/Component,

 Vector<Component>]

-->Implementing default behavior

 according to pattern

Composite

pattern

Source: J. Hannemann and G.

Kiczales, “Design pattern

implementation in Java and

AspectJ,” in Proc.

of 17th ACM SIGPLAN Conference on

Object-Oriented Programming,

Systems, Languages, and

Applications,

OOPSLA 2002. Seattle, Washington,

USA: ACM, 2002, pp. 161–173.

-->Implementing default behavior

 according to pattern

-->Applying roles from parent for specific case

 - Directory =has role= Composite

 - File =has role= Leaf

-->Specific Aspect to uniformly

 traverse files/directories

-->Specific implementation of

how the size on disk is calculated

-using intertype declaration

Client get size on disk using public methods

-others are encapsulated

 within pattern (aspect)!!!

Source: J. Hannemann and G. Kiczales, “Design pattern

implementation in Java and AspectJ,” in Proc.

of 17th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp.

161–173.

ASPECTS USED AS OBJECT

FACTORIES SINGLETON, PROTOTYPE,

MEMENTO, ITERATOR,

FLYWEIGHT-factory methods:

 a) PARAMETERIZED METHODS ON ABSTRACT ASPECT

 b) METHODS ATTACHED ON PARTICIPANTS

Nordberg’s factory example:

Source: J. Hannemann and G. Kiczales, “Design pattern

implementation in Java and AspectJ,” in Proc.

of 17th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications,

OOPSLA 2002. Seattle, Washington, USA: ACM, 2002, pp.

161–173.

-empty factory method returning null or default object

around advice

-new object is instantiated according to

provided arguments

 -otherwise default or null value is returned

calling original method

- is used to return specific instances of particular

types wrapping this factory method

Extending factory without modification of original code

-removes close coupling between original object and its representants /

accessor is removed in Memento, Iterator

Aspect-Oriented Recreation of

Design Patterns - Benefits

– replacing abstract classes (from original

 implementations) with interfaces

BRIDGE, BUILDER, FACTORY

METHOD, ABSTRACT FACTORY

- Preserving ability to attach implementation

 to their default methods

ALLOWS MUTIPLE INHERITANCE INTRODUCING NEW LANGUAGE

CONSTRUCTS

PROXY, STRATEGY,

DECORATOR

-aspect implementation fully replaces object-

oriented one

VISITOR,

ADAPTER
-attaching the advice

-extending interface of

Adaptee

STRUCTURALLY THE SAME

Limited form of multiple inheritance

 - Open Class Mechanism
- Attaching fields, methods – extending classes

- Attaching fields, methods – extending classes

Policy Pattern

 Defining policies or rules with the

application

Compiler warning or error

if such policy is broken

IN ONE

ASPECT

IN TWO

ASPECT
-project wide

rules or policies

-local rules or

exceptions

-defining abstraction

 using abstract aspect

-allows to specify pointcuts

later during development

Source: R. Menkyna, V. Vranić and I. Polášek, "Composition and

categorization of aspect-oriented design patterns," 2010 IEEE 8th

International Symposium on Applied Machine Intelligence and

Informatics (SAMI), Herlany, Slovakia, 2010, pp. 129-134,

doi: 10.1109/SAMI.2010.5423751.

Police Enforcement

 If exception is not handled by

advice

Advice cannot declare throwing

a checked exception

Should be handled in higher

context

-advised join point has to declare this exception

 -unlikely BASE CONCERNS TEND TO BE ADAPTED

 TO THEIR ASPECTS

 (HANDLING CROSSCUTTING CONCERNS)

1) CATCHING A CHECKED

EXCEPTION

2) WRAPPING IT INTO A

 NEW CONCERN SPECIFIC

RUNTIME EXCEPTION

ESSENCE OF THIS PATTERN

Source: R. Menkyna, V. Vranić and I. Polášek, "Composition and categorization

of aspect-oriented design patterns," 2010 IEEE 8th International Symposium on

Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 2010,

pp. 129-134, doi: 10.1109/SAMI.2010.5423751.

Exception Introduction Pattern

Border Control Pattern
 Defining regions in the application

In case of changes

-other dependencies (aspect using it) are automatically

redirected to newly defined places
Single aspect containing only pointcuts

That define boundaries of regions

Source: R. Menkyna, V. Vranić and I. Polášek, "Composition and

categorization of aspect-oriented design patterns," 2010 IEEE 8th

International Symposium on Applied Machine Intelligence and

Informatics (SAMI), Herlany, Slovakia, 2010, pp. 129-134,

doi: 10.1109/SAMI.2010.5423751.

-to restrict processing/modification only to

particular places

Only regions in respective aspect will

be redefined/changed

within() and withincode()

Using pointcuts (primitives)

based on lexical structure

Pattern Compositions

Source: R. Menkyna, V. Vranić and I. Polášek, "Composition and categorization of aspect-oriented design

patterns," 2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany,

Slovakia, 2010, pp. 129-134, doi: 10.1109/SAMI.2010.5423751.

Figure 8 shows how Cuckoo’s Egg

may be applied to replace

OldClass constructions with

NewClass construction.

Použitá literatúra
Patterns in AspectJ - 8. chapter: The AspectJ in Action Laddad, Ramnivas, 2003. AspectJ in
action: practical aspect-oriented programming. Greenwich, CT: Manning. ISBN 978-1-930110-
93-9.
Aspect-oriented recreation of Observer design pattern: E. Piveta and L. Zancanella,
“Observer pattern using aspect-oriented programming,” Proceedings of the Third Latin
American Conference on Pattern Languages of Programming, p. 12, 12 2003
Aspect-oriended recreation of design patterns, application of patterns: R. Miles, AspectJ
cookbook, 1st ed. Sebastopol, CA; Farnham: O’Reilly Media, 2004.
HANNEMANN, Jan a Gregor KICZALES, Design Pattern Implementation in Java and
AspectJ. 2002, s. 13.
R. Menkyna, V. Vranić and I. Polášek, "Composition and

categorization of aspect-oriented design patterns," 2010 IEEE 8th

International Symposium on Applied Machine Intelligence and

Informatics (SAMI), Herlany, Slovakia, 2010, pp. 129-134,

doi: 10.1109/SAMI.2010.5423751.

P. Baca and V. Vranic, "Replacing Object-Oriented Design Patterns with Intrinsic

Aspect-Oriented Design Patterns," 2011 Second Eastern European Regional

Conference on the Engineering of Computer Based Systems, Bratislava, Slovakia,

2011, pp. 19-26, doi: 10.1109/ECBS-EERC.2011.13.

https://www.manning.com/books/aspectj-in-action-second-edition

Use of aspects

in change

realization?

According to: http://www2.fiit.stuba.sk/~vranic/aosd/index.html

According to: http://www2.fiit.stuba.sk/~vranic/aosd/index.html

According to: http://www2.fiit.stuba.sk/~vranic/aosd/index.html

According to: http://www2.fiit.stuba.sk/~vranic/aosd/index.html

	Snímka 1: Aspect-Oriented Design Patterns
	Snímka 2: Autochthonous – Intrinsic Aspect-Oriented Patterns
	Snímka 3: Task: Run methods in different order according to their first argument after/before certain method is executed
	Snímka 4: Code that has to be left intact
	Snímka 5: Worker Creation and Its Application
	Snímka 6: Worker Object Creation
	Snímka 7: Worker Object Creation
	Snímka 8: Why autochthonous?
	Snímka 9: Worker Object Creation
	Snímka 10: Worker Object Creation
	Snímka 11: Wormhole
	Snímka 12: Task: Solve or Propagate Tasks To Other Employees But Not Propagate Tasks From Authority With ID = 13
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16
	Snímka 17
	Snímka 18
	Snímka 19
	Snímka 20
	Snímka 21
	Snímka 22: Cuckoo’s Egg
	Snímka 23
	Snímka 24: Cuckoo’s Egg
	Snímka 25
	Snímka 26: Coplien’s form of Cuckoo’s Egg
	Snímka 27
	Snímka 28
	Snímka 29
	Snímka 30
	Snímka 31: Implementation using AspectJ
	Snímka 32: Separating concerns with intertype declaration in AspectJ
	Snímka 33
	Snímka 34: Another Observer Implementation Using Abstract Aspect
	Snímka 35
	Snímka 36
	Snímka 37
	Snímka 38: Intertype declaration
	Snímka 39: Aspect-Oriented Refactoring of Singleton Design Pattern
	Snímka 40
	Snímka 41: Aspect-Oriented Refactoring of State Design Pattern
	Snímka 42: Aspect-Oriented Refactoring of State Design Pattern
	Snímka 43
	Snímka 44
	Snímka 45
	Snímka 46
	Snímka 47: Replacing OOP Patterns With AOP Intrinsic Ones
	Snímka 48
	Snímka 49
	Snímka 50: Aspect-Oriented Recreation of Design Patterns - Benefits
	Snímka 51: Roles and Their Crosscutting in Patterns
	Snímka 52: Composite pattern
	Snímka 53
	Snímka 54
	Snímka 55
	Snímka 56: Aspect-Oriented Recreation of Design Patterns - Benefits
	Snímka 57: Policy Pattern
	Snímka 58: Exception Introduction Pattern
	Snímka 59: Border Control Pattern
	Snímka 60: Pattern Compositions
	Snímka 61: Použitá literatúra
	Snímka 62: Use of aspects in change realization?
	Snímka 63
	Snímka 64
	Snímka 65
	Snímka 66

